Back
Spotter Platform
Peer-Reviewed Research

Alleviation of hypoxia by biologically generated mixing in a stratified water column

Sofar Ocean

This paper was written by I. A. Houghton and J. O. Dabiri.

Abstract

Daily vertical migrations of zooplankton have been shown to affect nutrient distributions and dissolved gas concentrations in lakes and oceans via active internal transport and metabolic consumption. Additionally, mixing generated by these migrations has been shown to have the capacity to alter the physical structure of a water column, with potential further implications for its biogeochemical structure. In this work, we use laboratory experiments to investigate the importance of biologically generated mixing relative to other processes in determining the biogeochemical structure of a water column inhabited by migrating zooplankton. Specifically, we consider oxygen, a highly ecologically relevant scalar, and the competition between metabolic consumption and biogenic mixing in a stably stratified water column with a hypoxic layer. Using laboratory experiments and a one-dimensional model informed by those measurements, we illustrate the potential for migrating animals to alleviate hypoxia, introducing complex feedbacks between the presence of animals and the biogeochemical state of their surroundings. Furthermore, we demonstrate the feasibility of oxygen as a potential indicator of biogenic mixing for future in situ investigations given its low diffusivity and higher signal-to-noise ratio.

Alleviation of hypoxia by biologically generated mixing in a stratified water column

April 24, 2019

Explore how zooplankton migrations impact lake/ocean biogeochemistry and oxygen levels, with insights from Houghton & Dabiri's research.

Related Stories

Sofar in the News
In the News
May 4, 2024
Buoys to help increase safety and understand erosion
In the News
May 1, 2024
Subsistence hunters measure wave height and use an app to predict conditions at sea
In the News
February 26, 2024
Better, Faster, Sooner: Voyage optimization goes digital