This paper was written by I. A. Houghton, P. B. Smit, D. Clark, C. Dunning, A. Fisher, N. J. Nidzieko, P. Chamberlain, and T. T. Janssen.
A distributed sensor network of over 100 free-drifting, real-time marine weather sensors was deployed in the Pacific Ocean beginning in early 2019. The Spotter buoys used in the network represent a next-generation ocean weather sensor designed to measure surface waves, wind, currents, and sea surface temperature. Large distributed sensor networks like these provide much needed long-dwell sensing capabilities in open-ocean regions. Despite the demand for better weather forecasts and climate data in the oceans, direct in situ measurements of marine surface weather (waves, winds, currents) remain exceedingly sparse in the open oceans. Because of the large expanse of Earth’s oceans, distributed paradigms are necessary to create sufficient data density at global scale, similar to advances in sensing on land and in space. Here we discuss initial findings from this long-dwell open-ocean distributed sensor network. Through triple-collocation analysis, we determine errors in collocated satellite-derived observations and model estimates. The correlation analysis shows that the Spotter network provides wave height data with lower errors than both satellites and models. The wave spectrum was also further used to infer wind speed. Buoy drift dynamics are similar to established drogued drifters, particularly when accounting for windage. We find a windage correction factor for the Spotter buoy of approximately 1%, which is in agreement with theoretical estimates. Altogether, we present a completely new open-ocean weather dataset and characterize the data quality against other observations and models to demonstrate the broad value for ocean monitoring and forecasting that can be achieved using large-scale distributed sensor networks in the oceans.